Server Builder’s Guide

for
pV3 Rev. 2.05

Bob Haimes

December 12, 2001

Sections marked with this change-bar are have had a major change from last release (Rev 2.00)

and may require some programming modifications.

License

This software is being provided to you, the LICENSEE, by the Massachusetts Institute of Technology
(M.ILT.) under the following license. By obtaining, using and/or copying this software, you agree

that you have read, understood, and will comply with these terms and conditions:

Permission to use, copy, modify and distribute, this software and its documentation for any
purpose and without fee or royalty is hereby granted, provided that you agree to comply with the
following copyright notice and statements, including the disclaimer, and that the same appear on

ALL copies of the software and documentation:
Copyright 1996-2001 by the Massachusetts Institute of Technology. All rights reserved.

THIS SOFTWARE IS PROVIDED “AS IS”, AND M.I.T. MAKES NO REPRESENTATIONS
OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITA-
TION, M.I.T. MAKES NO REPRESENTATIONS OR WARRANTIES OF MERCHANTABILITY
OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE LICENSED
SOFTWARE OR DOCUMENTATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS,
COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

The name of the Massachusetts Institute of Technology or M.I.T. may NOT be used in advertising
or publicity pertaining to distribution of the software. Title to copyright in this software and any

associated documentation shall at all times remain with M.I.T., and USER agrees to preserve same.

Contents

1 Introduction

1.1 Unsteady Classification L o
1.2 Extracts e
1.3 Multi-Threading e

1.4 Programming Notation L Lo

Built-in Server Side Extracts

2.1 Surfaces
2.2 Streamlines oL
2.3 Particles L
2.4 Vector Clouds
2.5 Points o

Calls that can be Invoked by Either Thread

3.1 pV.DiscipStat
3.2 pV.ClientStat
3.3 pV_CutStat
3.4 pV_ FieldStat
3.5 pVSetDiscip oo e
3.6 pV_GetExtract
3.7 pV _Pause

4.1 pVSafe e
4.2 pV_Register e
4.3 pVSetExtract
4.4 pV_ SetExState
4.5 pV_CrExtract
4.6 pVFillPoints e
4.7 pV_ DeExtract e
4.8 pV_DynTool. e
4.9 pV_ClearSub e

(&1 NG S

11
13
15
16

18
18
18
18
19
19
20
23

24

5 Graphics Thread Routines and Calls

51 pVRender
52 pV_GetSub
53 pVSetSub.

Running Your Server

6.1 Environment Variables

6.2 Special File - The Lock File

An FEL Example

7.1.1 I/O Threadcode
7.1.2 Graphics Thread code

7.1 Servercode
7.2 Client Side

Plotting Masks for Built-in Extracts

A1l Cut Surfaces
A2 Streamlines
A3 Particles
A4 Vector Clouds

31
31
31
32

33
33
33

34
34
34
36
36

1 Introduction

This manual is a guide for those individuals wishing to use pV3’s client-side API and network
based data movement, but do not want to view the data via pV3’s interactive server. This may be
necessary when either the data presentation is not appropriate or some other workstation-enhanced

technique (such as a Cave or VR) is used.

1.1 Unsteady Classification

Transient applications are classified in the following manner:

e OPT = 0; Steady-State

This is the simplest case. Nothing changes in time.

e OPT = 1; Data Unsteady
In this type of application the grid structure and position are fixed in time. The data defined
at the nodes (both scalar and vector) changes with each time step. An example is when a

boundary condition in the domain is changing.

e OPT = 2; Grid Unsteady
These cases are ‘Data Unsteady’ plus the grid coordinates associated with each node are
also allowed to move with each snapshot. An example of this is stator/rotor interaction in
turbomachinery. The stator and rotor grids are separate, with the rotor grid sliding past the
stator grid. In this case the stator portion is actually ‘Data Unsteady’ and the rotor grid

moves radially.

e OPT = 3; Structure Unsteady
If the number of nodes, number of cells or cell connectivity changes from iteration to iteration

the case is ‘Structure Unsteady’. An example of this mode is store separation.

1.2 Extracts

pPV3 has been designed to minimize network traffic. The client-side library extracts lower dimen-
sional data required by the requested visualization tool from the volume of data in-place. This
distilled data is transferred to the graphics workstation. To further reduce the communication bur-
den posed by the visualization session, the transient problem classification described above is used.
Only the extracted data that has changed from the last iteration is sent over the network. An ex-
tract is therefore the results of a visualization tool (geometric cut, iso-surface, streamline and etc.)
collected in a manner that provides flexibility and minimizes the volume of data so that a network

based visualization system can provide good frame-rates.

There are 2 type of extracts allowed within the pV 3 system. The first are pre-defined and include

those listed in Section 2. At startup the following built-in extracts will have been created:

e Domain Surface. One extract for each global surface with the plotting attributes set by the

client side.
e Particle Data. For unsteady flows with vector fields.

e Vector Cloud. For clients with vector fields. The attributes set for this tool are in the off state

at initialization.

e Dynamic. One extract is used by pV38Server for all dynamic tools.

The second type of extract is programmer defined. In this case code must be supplied at both

the client and server sides.

Each extract is divided into as many as 12 sub-extract components. This is done for the following

reasons:

e Unsteady updates
Extract information should be segregated based upon reducing the amount of data. For ex-
ample, a geometric-based cut is generated in a Data Unsteady client. For the second and
subsequent iterations, all geometric data does not change, and therefore need not be retrans-
mitted. The only new data required is the scalar field values associated with each vertex of the
object. With only moving this data, the extract can be properly rendered, coloring the surface
based on the current field. In this case, having the scalar values as a sub-extract produces a

great benefit.

e Network usage
Segregating data based on type is important. The underlying message passing (i.e. PVM)
may deal with hetrogenous machine environments. Being able to do the bit or byte twiddling

— based on type is required.

See Section 2 for an example of pV3’s pre-defined extracts and their sub-extract types.

For programmer defined extracts that use derived types and/or complex structures, the data
must be decomposed at the client side so that it can pass through the network interface. On the

server side the data can be reassembled from the sub-extracts.

1.3 Multi-Threading

pV3’s servers (pV3Server, pV3Batch and pV3Viewer) are all multi-threaded. In fact, they have 2
threads. The application that gets built using this guide also uses 2 threads, like the interactive

server. See Figure 1.

All extracts are double-buffered. This allows concurrent execution of the threads without data
contention. The I/O thread collects extracts in the client’s current iteration as the Graphics thread
is rendering from the previous set of data. Once the thread handshaking is complete, the buffers are

swapped, the last rendered data is thrown away (where appropriate) and the process continues.

The application built from this guide will have the same architecture as seen in Figure 1. The
difference is that the pV3 code used to ‘Render scene’, ‘Get Xevents’ and ‘Update state’ is replaced

by a single programmer supplied routine; pVRender. See Section 5.1.

Initialize system

Y

)

Y

)

Y

Broadcast requests

Render scene

Y

Get Xevents

Y

Collect extracts

Y

Update state i
A
Y Y
Synchronize — ---- HandShake S
Y Y
Swap data buffers Stall
I/O Thread Graphics Thread

Figure 1: The pV3 Server’s Threading Control

1.4 Programming Notation

pV3 was designed to be accessible from both FORTRAN and C. FORTRAN is more restrictive
in argument passing and naming, therefore it has shaped the programming interface. The routine
descriptions in this guide are from the C programmer’s point of view. But because FORTRAN is
supported with the same API all routine arguments are pass by reference. It is assumed that a

routine’s argument is not modified unless documented as such.

For IBM and HP ports, all pV3 entry points are the FORTRAN names in lower-case. On all
other platforms except the CRAY, external entries are lower-case with an underscore (‘_’) appended
to the end. CRAY entry points are upper-case with no appended underscores. See the file ‘pV3ser.h’

or ‘wsdepend.h’ in the servers subdirectory of the distribution for a method to avoid these problems.

Consistant with the pV3 naming convension, the routines that are part of pV3’s server suite

are prefixed with ‘pV_’; those that are supplied by the programmer start with ‘pV’.

2 Built-in Server Side Extracts

The following section describes the internal data stored in the pV 3 server structures for the built-in
extracts. This data can be used to produce the graphics objects that get rendered to make the
scene. Each tool generates a different type of extract from the 3D data in the client(s). The data
gets transmitted to the server and is stored for as long as it is needed. Each extract consists of a
number of sub-extract types, and there is a complete collection of sub-extracts for each client. Note:

each client’s data is stored separately.

2.1 Surfaces

This data is generated by the pV3 scalar tools (planar cuts, programmed cut surfaces, iso-surfaces
and domain surfaces). This data is exposed so that new ‘probes’ may be easily generated. The size
of many of these arrays (and therefore the pointers) will change during the execution of pV3, so

when using this data, get the current pointers before accessing the memory.

Extract | Type Valid Sub-Extracts
2 Planar Cut 01234567

3 Block Planes 12345678

4 Geometric Cut | 012345678

5 Domain Surface | 012345678

7 Iso-Surface 01234567

0 - Surface Sub-Extract Tris

The following data defines the disjoint triangle space. Where the number of triangles in the structure
is KTRI.

int TRIS[KTRI][4] disjoint triangle definitions.

TRIS[][0] = first node index for the triangle.
TRIS[][1] = second node index for the triangle.
TRIS[][2] = third node index for the triangle.
TRIS[][3] = the parent 3D cell number (in the client).

1 - Surface Sub-Extract Quads

The following data defines the disjoint quadrilateral space. Where the number of quadrilaterals in
the structure is KQUAD.

int QUADS[KQUADI5] disjoint quadrilateral definitions.
QUADS]J|[0] = first node index for the quadrilateral.
QUADSJ|[1] = second node index for the quadrilateral.
QUADS]J|[2] = third node index for the quadrilateral.
QUADSJ|[3] = fourth node index for the quadrilateral.
QUADS]J|[4] = the parent 3D cell number (in the client).

2 - Surface Sub-Extract XYZ

The following data defines the 3D coordinates for the nodes (and therefore also the number of nodes)
that support the surface. The number of nodes in the structure is KXYZ. If KXYZ is 1 this is usually
the indication of a sub-extract place-holder and not actual data.

float XYZ[KXYZ][3] (z,y, z)-coordinates for the nodes.

3 - Surface Sub-Extract Mesh

The following data defines the disjoint lines that make-up the intersection of the cell edges and the

cutting surface. The number of line segments in the structure is KFACE.

int FACE[KFACE][2] disjoint line definitions.
FACE]J][0] = first node index for the line.
FACE][]|[1] = second node index for the line.

4 - Surface Sub-Extract Outline
The following data defines the disjoint lines that make-up the outline of the surface. The number

of line segments in the structure is KEDGE.

int EDGE[KEDGE]([3] disjoint line definitions.
EDGE][|[0] = first node index for the line.
EDGE][|[1] = second node index for the line.
EDGE][][2] = the parent surface face number (in the client).

5 - Surface Sub-Extract Scalar

The following data defines the current scalar for the nodes (and therefore also the number of nodes)

that support the surface. The number of nodes in the structure is KS and is the same as KXYZ.

float S[KS] scalar functional values for the nodes.

6 - Surface Sub-Extract Vector

The following data defines the current vector for the nodes (and therefore also the number of nodes)

that support the surface. The number of nodes in the structure is KV and is the same as KXYZ.

float V[KV][3] vector values (Vz, Vy, Vz) for the nodes.

7 - Surface Sub-Extract Threshold

The following data defines the current threshold values for the nodes that support the surface. The
number of nodes in the structure is KT and is the same as KXYZ.

float T[KT] threshold functional values for the nodes.

8 - Surface Sub-Extract 2D Mapping

The following data defines the 2D mapping for the nodes that support the surface. The number of
nodes in the structure is KXY and is the same as KXYZ.

float XY[KXY][2] raw (2’,y')-coordinates as specified by the client.

Notes:
(1) The 2D mapping for planar cuts is implicit and not required from the client.

(2) There is no 2D mapping for iso-surfaces.

10

2.2 StreamLines

This data is generated by the pV3 clients during the integration of instantaneous streamlines. The
size of many of these arrays (and therefore the pointers) will change during the execution of pV3,
so when using this data, get the current pointers before accessing the memory. Unlike all other
extracts, the number of sub-extracts is not a function of the number of clients but of the maximum
allotted streamline segments (that is greater than the number of clients). This allows a streamline

to reenter a client more than once.

0 - StreamLine Sub-Extract Cell

The following data contains the 3D cell number for the position of the point for this segment (used

for the point probe). The number of entries in the structure is KCELL and is the same as KXYZ.

int CELL[KCELL] the parent 3D cell number (in the client).

1 - StreamLine Sub-Extract Time

The following data defines the integration pseudo-time for the point (used for streamline animation).
Where the number of elements in the structure is KTIME and is the same as KXYZ.

float TIME[KTIME] integration time (from the seed position).

2 - StreamLine Sub-Extract XYZ

The following data defines the 3D coordinates for the points that support this poly-line segment.
The number of nodes in the structure is KXYZ.

float XYZ[KXYZ][3] (z,y, z)-coordinates for the points.

3 - StreamLine Sub-Extract Div

The following data defines the cross-flow divergence felt by each point during the integration. Where
the number of elements in the structure is KDIV and this is the same as KXYZ.

float DIV[KDIV] used for streamtube rendering, where the size of the tube is

based on a starting size mutiplied by e to this power.

4 - StreamLine Sub-Extract Angle

The following data contains the curl for each point, calculated during the integration, in this segment
of the streamline Where the number of entries in the structure is KANG and this is the same value
as KXYZ.

float ANG[KANG] angle of the twist for ribbons in degrees.

11

5 - StreamLine Sub-Extract Scalar

The following data defines the current scalar for the points that support the line in this segment.

The number of points in the structure is KS and this is the same as KXYZ.

float S[KS] scalar functional values for the points.

6 - StreamLine Sub-Extract Vector

The following data defines the current vector for the points that make up this segment of the

streamline. The number of elements in the structure is KV and this is the same as KXYZ.

float V[KV][3] vector values (Vz, Vy, Vz) for the points.

7 - StreamLine Sub-Extract Threshold

The following data defines the current threshold values for the points that support the poly-line.

The number of entries in the structure is KT and is the same as KXYZ.

float T[KT] threshold functional values for the points.

12

2.3 Particles

This data is updated by the pV3 clients during the bubble integration at each time-step. The size
of many of these arrays (and therefore the pointers) will change during the execution of pV3, so

when using this data, get the current pointers before accessing the memory.

0 - Particle Sub-Extract Number

The following data contains the unique particle number for each bubble in that client. The number
of entries in the structure is KNUM and this is the same as KXYZ.

int NUM[KNUM] the global particle number.

1 - Particle Sub-Extract Time

The following data defines the start time for each bubble. The number of elements in the structure
is KTIME and this number is the same as KXYZ.

float TIME[KTIME] bubble simulation time when the particle was seeded.

2 - Particle Sub-Extract XYZ

The following data defines the current 3D coordinates for the particles. The number of nodes in the
structure is KXYZ.

float XYZ[KXYZ][3] (x,y, z)-coordinates for the bubbles.

3 - Particle Sub-Extract Div

The following data defines the cross-flow divergence currently felt by each bubble. Where the number
of elements in the structure is KDIV and this is the same as KXYZ.

float DIV[KDIV] optionally used for bubble rendering, where the size of the par-

ticle is based on a starting size mutiplied by e to this power.

5 - Particle Sub-Extract Scalar

The following data defines the current scalar for the particles in this client. The number of points
in the structure is KS and this is the same as KXYZ.

float S[KS] scalar functional values for the bubbles.

13

6 - Particle Sub-Extract Vector

The following data defines the current vector for the particles. The number of elements in the

structure is KV and this number is the same as KXYZ.

float V[KV][3] vector values (Vz,Vy, Vz) for the bubbles.

7 - Particle Sub-Extract Threshold

The following data defines the current threshold values for the particles. The number of entries in
the structure is KT and is the same as KXYZ (the number of bubbles).

float T[KT] threshold functional values for the bubbles.
10 - Particle Sub-Extract Group Index

The following data defines the current group number for the particles. The number of entries in the
structure is KGI and is the same as KXYZ (the number of bubbles).

int GI[KGI] group index for the bubbles (used for time lines).

14

2.4 Vector Clouds

2 - VC Sub-Extract XYZ

The following data defines the coordinates for the 3D nodes that satisfy the threshold limits within

each client. The number of nodes in the structure is KXYZ.

float XYZ[KXYZ][3] (z,y, z)-coordinates for the vector cloud.

5 - VC Sub-Extract Scalar

The following data defines the current scalar for the vector cloud The number of points in the

structure is KS and this number is the same as KXYZ.
float S[KS] scalar functional values for the 3D nodes.
6 - VC Sub-Extract Vector

The following data defines the current vector for each node in the client that satisfies the threshold

limits. The number of elements in the structure is KV and this number is the same as KXYZ.

float V[KV][3] vector values (Vz,Vy, Vz) for the vector cloud.

15

2.5 Points

This data is updated by the pV3 clients after a Point extract is created. This can only be done via
a call to pV_CrExtract.

0 - Point Sub-Extract Index

The following data contains the index (bias 1) from the original list for this point. The number of
entries in the structure is KINDX and this is the same as KXYZ.

int INDX[KINDX] the point index.

1 - Point Sub-Extract Cell Index

The following data contains the cell index in the client that contains the point. The number of
entries in the structure is KICEL and this is the same as KXYZ.

int ICEL[KICEL] the cell index.

2 - Point Sub-Extract XYZ

The following data defines the coordinates for the 3D points requested from within each client. The

number of nodes in the structure is KXYZ.

float XYZ[KXYZ][3] (x,y, z)-coordinates for the points.

3 - Point Sub-Extract Local Block Index

The following data contains the clients local block index (bias 1) for this point. An index of zero is
an indication that the point is not in a structured block. The number of entries in the structure is
KLNIN and this is the same as KXYZ.

int LBIN[KLBIN] the structured block index.

4 - Point Sub-Extract IJK Indices

The following data defines the IJK (with fraction) for the points requested from within each client.
This contains valid data if the point is contained within a structured block. The indices are local
to the clients numbering. The number of entries in the structure is KIJK and this is the same as
KXYZ.

float IJK[KIJK][3] (I, J, K)-indices for the points.

16

5 - Point Sub-Extract Scalar

The following data defines the current scalar for the point extract. The number of points in the

structure is KS and this number is the same as KXYZ.

float S[KS] scalar functional values for the requested points.

6 - Point Sub-Extract Vector

The following data defines the current vector for each node in the client. The number of elements

in the structure is KV and this number is the same as KXYZ.
float V[KV][3] vector values (Vz,Vy, Vz) for the points.
7 - Point Sub-Extract Threshold

The following data defines the current threshold values for the requested points. The number of
nodes in the structure is KT and is the same as KXYZ.

float T[KT] threshold functional values for the points.

17

3 Calls that can be Invoked by Either Thread

3.1 pV_DiscipStat

PV_DISCIPSTAT(DID,NID,NCL,DNAME)

This routine returns the status for the disciplines known to the system.

int *DID The discipline ID. The first discipline id always 0, therefore it
is always safe to make this call with this argument zero.

int *NID The total number of disciplines in the simulation. Returned.

int *NCL The number of clients in the discipline DID. Returned.

char DNAME[20] The discipline’s name. Returned.

NID must be atleast 1 for any valid pV3 application therefore it is always valid to make this
call with DID = 0.

3.2 pV_ClientStat

PV_CLIENTSTAT(DID,CID,0PT,NCL,0N,CNAME)

This routine returns the status for a client within a discipline.

int *DID The discipline ID. Must be a value from 0 to NID-1.
int *CID The client ID. Must be a value from 1 to NCL.

int *OPT The client’s unsteady index (0-3). Returned.

int *NCL The number of clients in the discipline DID. Returned.
int *ON Visibility flag — not used. Returned.

char CNAME|[20] The clients’s name. Returned.

NCL must be atleast 1 for any valid pV3 discipline therefore it is always valid to make this call
with CID = 1.

3.3 pV_CutStat

PV_CUTSTAT(DID,CIN,NCT,CTITLE)

This routine returns the status for a programmed cut within a discipline.

int *DID The discipline ID. Must be a value from 0 to NID-1.

int *CIN The cut index. Must be a value from 1 to NCT.

int *NCT The number of geometric cuts in the discipline DID. Returned.
char CTITLE[32] The geometric cut’s title. Returned.

There may be no cuts (i.e. NCT = 0). To determine the number of cuts, call this routine with
CIN =1, then check NCT.

18

3.4 pV_FieldStat

PV_FIELDSTAT(DID,FID,NFL,FTY,FLIMS,FNAME)

This routine returns the status for a field variable within a discipline.

int *DID The discipline ID. Must be a value from 0 to NID-1.
int *FID The field ID. Must be a value from 1 to NFL.
int *NFL The number of field variables in the discipline DID. Returned.

An error is indicated by the value —1 which indicates that the
discipline index or field ID is out of range.

int *FTY The field’s type (1-5). Returned.

1 Scalar
2 Vector
3 Surface scalar

4 Surface vector

5 Threshold

float FLIMS|[2] Field limits from the clients. Returned.
char FNAME[32] The field’s name. Returned.

NFL must be atleast 1 for any valid pV3 application therefore it is always valid to make this
call with FID = 1.

3.5 pV_SetDiscip

PV_SETDISCIP(DID)

This routine sets the current discipline. Not needed for a single discipline case.

int *DID The discipline ID. Must be a value from 0 to NID-1.

19

3.6 pV_GetExtract

PV_GETEXTRACT(EX, TYPE,EXNUM,IVEC,RVEC,NAME,NEXTEX)
Returns the internal pV3 extract structure info for the current discipline. The extracts form a
linked list. There is a unique list for each discipline. This routine allows the scanning of all active

extracts by continual calls until the desired extract is found.

void **EX Extract pointer. On input, this is the desired extract. The
special case of the first extract is indicated by a NULL and is

updated with the actual extract pointer.

int *TYPE The extract type. Returned.

int *EXNUM The extract number. Returned.

int IVEC]] Integer data set based on TYPE (length also determined by
TYPE). Returned.

int RVEC]] Float data set based on TYPE (length also determined by TYPE).
Returned.

char NAME[20] Extract name. Returned.

void **NEXTEX Returned pointer to the next extract. NULL indicates that this

is the last extract. NEXTEX can be used in the next call to
pV_GetExtract (argument EX) to continue scanning the list.

The following data is related to data in the Graphics buffer:

e Planar Cut - TYPE = 2
IVEC|[0] = Plot Mask

IVEC]|1] = Scalar field index
IVEC]2] = Vector field index
IVEC][3] = Threshold index
IVEC[4] = Instancing mask
RVEC[0-8] = Cut corners - Three of the 4 corners that denote the plane
RVEC[9-11] = Plane normal
e Structured Block Plane - TYPE = 3
IVEC|[0] = Plot Mask
IVEC]|1] = Scalar field index
IVEC|2] = Vector field index
IVEC]3] = Threshold index
IVEC[4] = Global Block number
IVEC|5] = Instancing mask
RVEC|[0-5] = Block Indices - Iin, Imazs Jmins Jmazs Kmin and Kz
RVEC[6] = Rotation of the data in the 2D Window

20

RVEC][7] = Center of 2D Window in X’

RVEC|[8] = Center of 2D Window in Y’

RVEC[9] = 1/2 Window size

Geometric Cut - TYPE =4

IVECI|0] = Plot Mask

IVEC][1] = Scalar field index

IVEC|2] = Vector field index

IVEC[3] = Threshold index

IVEC[4] = Cut index - May be the index negated

IVEC[5] = Instancing mask

RVEC[0] = Z prime

RVEC[1] = Center of 2D Window in X’

RVEC|2] = Center of 2D Window in Y’

RVECI[3] = 1/2 Window size

RVEC[4] = Rotation of the data in the 2D Window

REVC][5] = DeltaTime - Zero indicates a normal extract. Any other value performs time
averaging for the specified time segment (Data Unsteady only).

Domain Surface - TYPE =5

IVEC|[0] = Plot Mask

IVEC][1] = Scalar field index

IVEC]2] = Vector field index

IVEC][3] = Threshold index

IVEC[4] = Mapping flag

IVEC[5] = Special surface scalar index
IVEC][6] = Special surface vector index
RVEC[0] = Center of 2D Window in X’
RVEC][1] = Center of 2D Window in Y’
RVEC[2] = 1/2 Window size

RVEC|3] = Rotation of the data in the 2D Window

Iso-Surface - TYPE =7

IVEC[0] = Plot Mask

IVEC][1] = Scalar field index

IVEC|2] = Vector field index

IVEC][3] = Threshold index

IVEC[4] = Scalar index for Iso-Surface
RVEC[0] = Z prime

21

e StreamLine - TYPE = 18

IVEC[0] = Plot Mask

IVEC]1] = Scalar field index

IVEC]2] = Vector field index

IVEC][3] = Threshold index

IVEC[4] = StreamLine Group number

IVEC[5] = Client-id for client with seed location
IVEC[6] = Cell index in client to start StreamLine
IVEC[7] = Minimum StreamLine number for group
IVEC[8] = Maximum StreamLine number for group
IVEC[9] = Surface Index (0 - volume StreamLine)
IVEC[10] = Number of StreamLine segments
RVEC[0-2] = Seed location (XYZ)

e Particles - TYPE = 19

IVEC[0] = Plot Mask
IVEC]|1] = Scalar field index
IVEC|2] = Vector field index
IVEC[3] = Threshold index

e Vector Cloud - TYPE = 20

IVEC|[0] = Plot Mask

IVEC]1] = Scalar field index
IVEC]2] = Vector field index
IVEC][3] = Threshold index
RVEC[0] = Threshold minimum
RVEC]|[1] = Threshold maximum

e Points - TYPE = 21

IVEC|[0] = Plot Mask

IVEC]|1] = Scalar field index

IVEC|2] = Vector field index

IVEC][3] = Threshold index

IVEC[4] = List Length - # of requested points
IVEC[5] = Request Type - 0 XYZ, 1 IJK

22

e Programmer-defined - TYPE > 100

IVEC[0] = Plot Mask - Not used

IVEC]1] = Scalar field index

IVEC]2] = Vector field index

IVEC][3] = Threshold index

IVEC[4] = IVAL

RVEC][0-8] - Float values assoctated with the extract

3.7 pV_Pause

PV_PAUSE(STATE)
Handles the Pause and Single-Step functions as initiated by key strokes in the interactive server.

NOTE: The process of pasuing is pipelined and gets set after another call to pVSafe.

int *STATE Pause state (input and returned)

On input:
-2 - Release form Single-step
-1 - Release from pause or step in Single-Step mode
0 - Do nothing — just get status
1 - Pause
2 - Set Single-Step

Output (status):
-4 - mode already invoked
-3 - Steady State case
-2 - More than 1 server
-1 - Change of pause state already queued
0 - Not Paused or in Single-Step mode
1 - Paused

2 - In Single-Step mode

23

4 1/0 Thread Routines and Calls

4.1 pVSafe

PVSAFE()

This programmer-supplied routine is called when the graphics thread of the server is stalled. This

is the time where calls can be made that require neither thread to be active. The buffers have not

been swapped, so that queries of extracts will look at the last state.

NOTE:

No Arguments

The first calls to pVSafe are done when there is only one thread. The first should be used to register

all extracts (at least for the first allocation).

4.2 pV _Register

EX = PV_REGISTER(INDEX, NAME, SUBTYPE, SUBSIZE, SUBOPT, SUBLOC,

ROUTINE, EXNUM)

Registers a programmer-defined extract with the pV3 server. This routine should only be called

when the threads are sync’ed, therefore the only valid place to execute this routine is within pVSafe.

For multi-disciplinary cases, the discipline index must be set so that the extract is registered within

the appropriate discipline. The client-side extraction code must be linked with the client application.

See the Advanced Programmer’s Guide.

void *EX
int *INDEX

char NAME|[20]
int SUBTYPE[12]

int SUBSIZE[12]

int SUBOPT|12]

The extract pointer if EXNUM does not indicate an error.

The extract index. This number must be greater that 100 and
defines an extract. Different disciplines must use unique extract
indices!

Extract name.

The subextract types. Each extract is composed of up to 12
subextracts for each client. This vector defines whether the

subextract is an integer (0) or a float (1).

The subextract size per length. For example, if the subextract
is for the 3D coordinates (X,Y,Z) that support the extract, the
size would be 3.

The level of unsteadyness that requires the data at every time-
step. Valid entries are 0 to 3 (where 3 is a special flag for a
server-side only subextract). The following table specifies what

action is taken with an existing subextract:

Clients OPT—>| 0 | 1 | 2 | 3

SUBOPT =0 leave | refill | refill | refill
SUBOPT =1 leave | leave | refill | refill
SUBOPT = 2 leave | leave | leave | refill

24

int SUBLOC]I12] The subextract’s locality. If this subextract comes from the
clients then the value is -1. If this subextract is local to the
server and it’s length is set by another subextract, then SUBLOC
must contain the index (0 biased) to that subextract. SUB-
OPTs for local subextracts must match that of the keyed subex-

tract.

void (*ROUTINE)() Not used — for compatibility with the Advanced Programmer’s
interface.

int *EXNUM This is a status return. If the value is zero or greater, that

indicates success. The value is the number used for multiple
allocations of extracts with the same INDEX. If the number is
negative it is an indication of an error:

-1 - Invalid INDEX number

-2 - Invalid SUBTYPE in one of the entries

-3 - Invalid SUBSIZE in one of the entries

-4 - Invalid SUBOPT in one of the entries

-5 - Invalid SUBLOC in one of the entries

-6 - SUBTYPE mismatch for subsequent calls using
INDEX

-7 - SUBSIZE mismatch for subsequent calls
-8 - SUBOPT mismatch for subsequent calls
-9 - SUBLOC mismatch for subsequent calls
-10 - ROUTINE mismatch for subsequent calls
-11 - Allocation error
-12 - Routine not called from pVSafe
-13 - SUBOPT's mismatch for local subextract

25

4.3 pVSetExtract

PVSETEXTRACT(INDEX,EXNUM,PLOTMASK,REQMASK,IVAL,RVEC)

This routine gets called for each registered extract during the request collection phase.

int *INDEX

int *EXNUM
int *PLOTMASK

int *REQMASK

int *IVAL

float RVEC]9]

4.4 pV _SetExState

The extract index. This number must be greater that 100 and

defines an extract (and discipline).
The extract number associated with INDEX.

Not used, for compatibility with the Advanced Programmer’s

interface.

The request mask. Each bit specifies which subextracts are
required to statisfy the plotting attributes. For example, 5 re-
quests subextract 0 and subextract 2. If the most-significant bit
is set all subextracts are requested, even if based on SUBOPT,
the data exists (i.e. some state has changed). Must be filled on

return.

An integer sent to the clients associated with this extract. Must

be set upon return.

A float vector of data sent to the clients with the request for

this extract. Must be set upon return.

PV_SETEXSTATE(EX,PLTMASK,SCALAR,VECTOR,THRES)
Sets the plot mask and field variables for the specified extract. This routine should be called from

pVSafe to insure that the change to the attributes is effective for the next iteration. This overrides

the default field variable specifications for this extract. The default values can be set via a call to
pV_SetState with OPT = 5, 6, and/or 7.

void **EX

int *PLTMASK

int *SCALAR
int *VECTOR

int *THRESH

Extract pointer as returned by pV_GetExtract,
PV _Register or pV_CrExtract.
NOTE: these pointers do not change during the life of the server

application.

Plot mask to be set for the extract — built-ins only. See the

Appendix for the mask values.
Scalar field index to be used. Zero indicates the default scalar.

Vector field index to be used. Zero indicates the default vector

index.

Threshold index, (-) indicates a scalar field index. Zero indicates
the use of the default threshold field variable.

26

4.5 pV_CrExtract

EX = PV_.CREXTRACT(TYPE,NAME,IVEC,RVEC,EXNUM)

Creates a built-in extract for the current discipline.

void *EX The extract pointer if EXNUM does not indicate an error.
int *TYPE The extract type. Valid entries are 2, 4, 7, 18 and 21.
Type of 21 invokes the call-back pVFillPoints.
char NAME[20] Extract name.
int IVEC[7] Integer data set based on TYPE.
float RVEC]9] Float data set based on TYPE.
int *EXNUM The returned extract instance. If the number is negative it is

an indication of an error:

-1 - Length error
-2 - Invalid TYPE
-11 - Allocation error

-12 - Routine not called from pVSafe

e Planar Cut - TYPE = 2

IVEC]0] = Instancing Mask - 0 allow replication, 1 no instancing
RVEC|[0-8] = Cut corners - Three of the 4 corners that denote the plane

e Structured Block Plane - TYPE = 3

IVEC[0] = Global Block number
IVEC][1] = Instancing Mask - 0 allow replication, 1 no instancing
RVEC|[0-5] = Block Indices - Inin, Imazs Jmins Jmazs Kmin and Kpaz.

o Geometric Cut - TYPE =4

IVEC[0] = Cut index - 1 to NCT
IVEC][1] = Instancing Mask - 0 allow replication, 1 no instancing
RVEC|[0] = Z prime

REVC|[5] = DeltaTime - Zero indicates a normal extract. Any other value performs time

averaging for the specified time segment (Data Unsteady only).
o Iso-Surface - TYPE =7

IVEC[0] = Scalar index for Iso-Surface
RVEC[0] = Z prime

e StreamLine - TYPE = 18

IVEC|0] = StreamLine Group number

27

IVEC][1] = Client-id for client with seed location
IVEC|2] = Cell index in client to start StreamLine
IVEC[3] = Minimum StreamLine number for group
IVEC[4] = Maximum StreamLine number for group
IVEC|[5] = Surface Index (0 - volume StreamLine)
IVEC[6] = StreamLine number

RVEC[0-2] = Seed location (XYZ)

e Point - TYPE = 21

IVEC[0] = Length of Point Request list
IVEC[1] = Request Type - 0 XYZ, 1 IJK

4.6 pVFillPoints

PVFILLPOINTS(EX,EXNUM,PTYPE,LEN,CC,POS,NAME,NLen)
This routine gets called when a Point extract is created by pV_CrExtract. It specifies the points

in space to be located and returned with data.

void **EX Extract pointer.

int *EXNUM The extract number associated with EX.

int *PTYPE The specified request type — 0 XYZ, 1 IJK

int *LEN The specified number of points.

int CC[J[2] The client ID/cell index pair (filled):
If the type is 1 then CC[][1] refers to the global block number
and not the cell index. A client id = —1 tries all clients.

float POSJ[][3] The specified position (filled):

If PTYPE is 0 this is just the XYZ coordinates, otherwise it
refers to the IJK in the global block specified in CC. The IJKs
can have fractional components which cause interpolation in the

appropriate cell.
char NAME[NLen] Extract name.
int NLen NAME:s length.

4.7 pV_DeExtract

PV_DEEXTRACT(EX)
Deletes the specified extract. This routine should only be called from pVSafe.

void **EX Extract pointer as returned by pV_GetExtract,
PV _Register or pV_CrExtract.

28

4.8 pV_DynTool

PV_DYNTOOL(DID, IFN, PTMSK, IVEC, RVEC, ISTAT)
Handles the Dynamic Surface functions as as in the interactive server. Should be be called from

pVSafe to ensure the changes get made after pVSafe returns.

int *DID The discipline ID
int *IFN The function index:
0 - No tool

2 - Planar cut

3 - Structured block tool

4 - Geometric cut

5 - Domain surface mapping

6 - Domain surface mapping with special functions

7 - Iso-surface

int *PTMSK The plot mask

int IVEC]] Integer data set based on IFN
int RVEC]] Float data set based on IFN
int *ISTAT Return status

e Planar Cut - IFN = 2
RVECJ[0-8] = Cut corners - Three of the 4 corners that denote the plane

e Structured Block Plane - IFN = 3

IVECI|0] = Global Block number

IVEC[1-6] = Block Indices - Inin, Imazs Jmins Jmazs Kmin and Kpaz.
o Geometric Cut - IFN =4

IVEC[0] = Cut index

RVEC[0] = Z prime

RVEC]1] = Center of 2D Window in X’

]
]
RVEC]|2] = Center of 2D Window in Y’
RVECI[3] = 1/2 Window size

]

RVEC[4] = Rotation of the data in the 2D Window

29

e Domain Surface - IFN =5 & 6

IVEC[0] = Surface Index

IVEC]1] = Special surface scalar index
IVEC]2] = Special surface vector index
RVEC][1] = Center of 2D Window in X’

RVEC[3

]
RVEC|[2] = Center of 2D Window in Y’
] = 1/2 Window size

]

RVEC[4] = Rotation of the data in the 2D Window
e Iso-Surface - IFN =7

IVEC[0] = Scalar index for Iso-Surface
RVEC[0] = Z prime

4.9 pV_ClearSub

PV_CLEARSUB(EX,SUBEX,NUMCS)
This clears the memory for the server-side subextract. It has the effect of causing the subsextract

to be reloaded from the client(s). This routine should only be called from pVSafe.

void **EX Extract pointer as returned by pV_GetExtract or
PV _Register.

int *SUBEX Sub-extract number (0-11).

int *NUMCS Client index (0 biased).

30

5 Graphics Thread Routines and Calls

5.1 pVRender

PVRENDER(TIME)

This is the routine that gets called to render the data. It might get called more than once for each
set of data depending on the length of time to render and the client-side update frequency. In this
case, the value of TIME does not change.

float *TIME The simulation time for the data.

5.2 pV_GetSub

ISTAT = PV_GETSUB(EX,SUBEX,NUMCS,PTR,LEN,CID)
Returns the internal pV 3 sub-extracts. This routine returns the Graphics thread pointers (from the

two buffers).

void **EX Extract pointer as returned by pV_GetExtract,
pV_Register or pV_CrExtract.

int *SUBEX Sub-extract number (0-11 based on TYPE).

int *NUMCS Client index or StreamLine segment number (0 biased).

void **PTR Returned pointer to the structure. NULL indicates that the
memory block is not allocated.

int *LEN Length of structure. A 0 (zero) indicates that the structure is
not currently filled. Returned.

int *CID Client-id for the client that produced the segment Returned
(StreamLines Only).

int ISTAT Return code:

-1 - ERROR

0 - Not Updated since last access

1 - Data has been updated since last call to this routine

31

5.3 pV_SetSub

ISTAT = PV_SETSUB(EX,SUBEX,NUMCS,LEN)
This sets the memory for the server-side subextract based on LEN. If there is a currently allocated
block, then its size is adjusted to LEN. If LEN is zero any allocated block is free’d. This routine can

be called from any server programmer-supplied code.

void **EX Extract pointer as returned by pV_GetExtract or
PV _Register.
int *SUBEX Sub-extract number (0-11).
int *NUMCS Client index (0 biased).
int *LEN Length of structure, the total length of the memory block in
words is LEN*SUBSIZE (when registered).
int ISTAT Return code:
0-OK

-1 - Invalid EX
-2 - Invalid SUBEX
-3 - Invalid NUMCS

-4 - Allocation error

NOTES:
1) There are still subextracts for each client indexed by NUMCS — they need not be used.
2) After this call you may invoke pV_GetSub to expose the pointer to the block of memory. This
block can now be filled.

32

6 Running Your Server

The PVM daemon(s) and with co-processing, the solver, must be executing. Without a pV3 server
running, every time the solution is updated, a check is made for the number of members in the
PVM group pV3Server (Note: this name can be changed for multiple jobs running under the same
user ID — see the Section 6.1 for the environment variable ‘pV3_Group’). If no servers are found,
no action is taken. When a pV3 server starts, it enrolls in the specified group. The next time
the solution is updated, an initialization message is processed and the visualization session begins.
Each subsequent time in the solver completes a time step, visualization state messages and extract

requests are gathered, the appropriate data calculated, collected and sent to the active server(s).

When the user is finished with the visualization, the server sends a termination message and
exits. The clients receive the message, and if no other servers are running, cleans up any memory
allocations used for the visualization. Then the scheme reverts to looking for server initialization, if

termination was not specified at pV3 client initialization.

6.1 Environment Variables

A pV3 server built using this guide automatically looks at three Unix environment variables:

‘pV3_TO’ should be used to change the internal Time-Out constant. If the variable is set, it
must be an integer string which is the number of seconds to use for the Time-Out constant (the
server’s default is 60). This may be required if the time between solution updates is long. See the

section in the pV3 Server User’s Reference Manual on Time-Outs and Error Recovery.

‘pV3_Group’ is usefull for differentiating multiple PVM jobs running under the same user ID.
If this variable is set for the solver (client-side) before execution, it overrides the default client side
group name p V3Client. The name used is the string assigned to this variable with Client appended.
By setting this variable before server execution, it will set the server group to the variable’s string
with Server appended instead of using p V3Server. Only clients with the appropraite matching group

name will be connected to this session.

‘pV3_Threading’ is used to specify how handshaking is handled between the active threads. There
are two methods; (1) ‘Hard” where the thread sits in a hard loop (with a thread yeild) looking for a
change of state, or (2) ‘Flag’ where the threads use Semaphores for waiting until the state changes.
The advantage of ‘Hard’ is interactivity, the advantage for ‘Flag’ is less processor time consumed.
By default, this variable is set to ‘Hard’ for most situations with single processor workstations and
‘Flag’ for multi-processors.

Exceptions: ALPHA’s default is ‘Hard’, SUN’s default is ‘Flag’, reguardless of number of processors.

6.2 Special File - The Lock File

If the server is running on a multi-processor SGI workstation a file is used for the coordination of
the 2 threads generated during execution. This file has the name ‘.pV3.locks’ and is open in the
current directory. It should be noted that running two invocations of the pV3 server from the same

directory will NOT work. Both will use the same file for the lock and semaphore arenal!

33

7 An FEL Example

The following is a very simple coding example of both making a programmed defined extract (at
the server and client-side) as well as skeleton code for the customized server. It is assumed that the
visualization is steady-state and there is only one discipline.

7.1 Server code

7.1.1 I/O Thread code

#include <stdio.h>
#include <stdlib.h>
#include "pV3ser.h"

/* required to deal with visualization control and state */

extern void get_field(int *scalar, int *vector, int *thresh);

extern int get_pltmask(int type, int exnum);

void

PVSAFE()

{
static int EXNUM = -14;
static char *name = "FEL StreamLine ",
static int subtype[12] = { 1, 0, 0, O, O, O, O, O, O, O, O, O};
static int subsize[12] = { 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
static int subopt[12] = {0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13};
static int subloc[12] = {-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1};

int ivec[11], type, exnum, pltmask, scalar, vector, thresh, opt;
char exname[20];
float rvec[12];

void *ex, *nextex;

/* register the extract */

opt = 101;

if (EXNUM != -14) PV_REGISTER(&opt, name, subtype, subsize,
subopt, subloc, NULL, &EXNUM);

/* get the current field variables */

get_field(&scalar, &vector, &thresh);
/* loop through all defined extracts */
ex = NULL;

PV_GETEXTRACT (&ex, &type, &exnum, ivec, rvec, exname, &nextex);

34

while (ex '= NULL) {
PV_GETEXTRACT (&ex, &type, &exnum, ivec, rvec, exname, &nextex);

/* set extract’s attributes for the next set of data */
pltmask = O;

if (type < 100) pltmask = get_pltmask(type, exnum);
PV_SETEXSTATE(&ex, &pltmask, &scalar, &vector, &thresh);

ex = nextex;

void
PVSETEXTRACT (int *index, int *exnum, int *pltmsk, int *mask,

int *ival, float *rvec)

/* called only for programmed extracts */

if (*index != 101) return;

/* get the one sub-extract */

*mask = 1;

/* set the start location */

rvec[0] = 0.0; /* X */

rvec[1] = 0.0; /* Y %/

rvec[2] = 0.0; /% Z %/
T

35

7.1.2 Graphics Thread code

#include <stdio.h>
#include <stdlib.h>
#include "pV3ser.h"

typedef struct {
float X; float Y; float Z;} Triad;

void
PVRENDER (float *time)
{
int ivec[11], type, exnum, len, cid;
char exname[20];
float rvec[12];
void *ex, *nextex;

Triad *streamline;

/* loop through all defined extracts */
ex = NULL;
PV_GETEXTRACT (&ex, &type, &exnum, ivec, rvec, exname, &nextex);
while (ex != NULL) {
PV_GETEXTRACT (&ex, &type, &exnum, ivec, rvec, exname, &nextex);

/* our extract */

if (type == 101) {
PV_GETSUB(&ex, 0, 0, (void *x) &streamline, &len, &cid);
/* plot the streamline */

/* domain surfaces */
if (type == 5) {

/* plot domain surfaces */

ex = nextex;

7.2 Client Side

It is assumed that most of the pV3 client-side code has already been constructed. See the pV3
Programmer’s Guide for a complete description of this coupling. The code listed below calculates a
streamline using FEL as a programmed extract. It assumes that only one extract has been defined

and that extract has only one sub-extract.

36

It may be necessary to consult the Advanced Programmer’s Guide and FEL’s documentation to
understand this C++ code listing.

#include <stdio.h>
#include <stdlib.h>

#include <iostream.h>

#include <FEL.h>
#include "pV3.h"

#define MAX_LENGTH 2000
#define TIMESTEP 0.02

void
PVEXTRACT (int *index, int *exnum, int *reqmask, int *ival, float *rvec)
{
static int first = 0;
static FEL_grid *grid;
static FEL_vector_field *velocity;
float v[3], *pVel, xbuffer, *iblank;
int i, i3, j, opt, nnodes, nblank;
int length;
float streamline[MAX_LENGTH] [3];
vertex_data *pVgrid;
FEL_bary_pos current_bary;
FEL_bary_pos last_bary;

FEL_phys_pos current_position;

if (first == 0) {
// instantiate grid object
grid = new FEL_structured_grid("grid", 1);

// set the grid type
grid->set_grid_type (FEL_GRID_P3D_NO_IBLANK) ;
grid->set_grid_type (FEL_GRID_P3D_SINGLE_ZONE) ;

// load the grid data

opt = 301;

PV_GETSTRUC(&opt, (void #*x*)&buffer, &nnodes);

pVgrid = (vertex_data *) malloc(nnodes * sizeof (vertex_data));

for (i=0,i3=0; i<nnodes; i++,i3+=3) {

(pVgrid + i)->x = buffer[i3 1];
(pVgrid + i)->y = buffer[i3+1];
(pVgrid + i)->z = buffer[i3+2];

(pVgrid + i)->iblank = 1;

37

¥
opt = 306;
PV_GETSTRUC(&opt, (void **)&iblank, &nblank);
if (nblank != 0)
for (i=0; i<nnodes; i++) (pVgrid + i)->iblank=iblank[i];

grid->geom->new_timestep(pVgrid) ;

// instantiate a vector field
velocity = FEL_make_new_vector_field("velocity", grid, 2);
// select the file type
velocity->set_file_type(FEL_PLOT3D_SOLUTION_FILE);
// load the vector data
opt = 304;
PV_GETSTRUC(&opt, (void **)&pVel, &nnodes);
velocity->new_timestep(pVel);

}

first++;

// initialize the current physical position
length = 0;

current_position.x = rvec[0];
current_position.y = rvec[1];
current_position.z = rvec[2];

current_position.time = 0.0;

// initialize the streamline vertices

streamline[length] [0] = current_position.x;
streamline[length] [1]
streamline [length] [2]

current_position.y;

current_position.z;

// initialize the barycentric coordinates
grid->phys_to_bary(current_position, current_bary);

last_bary = current_bary;

// Euler streamline computation loop

while (length < MAX_LENGTH-1)

{
// get the velocity value using last_bary to optimize
// point location algorithm. Stop if get_value
// returns O as that means we fell off the grid

if (!velocity->get_value(current_position, last_bary, v)) break;

// add the velocity times the timestep to the current position
current_position.x += TIMESTEP * v[0];

38

current_position.y += TIMESTEP * v[1];
current_position.z += TIMESTEP * v[2];
length++;

// save the current position as a streamline vertex

streamline[length] [0] = current_position.x;

streamline[length] [1] = current_position.y;

streamline[length] [2] = current_position.z;

// send the streamline data to the server

i=23; j=0;

length++;

pV_SENDXR(index, exnum, &j, &i, &length, (float *)streamline);

39

A Plotting Masks for Built-in Extracts

The following are additive (or-able) so that the proper attibutes can be specified.

A.1 Cut Surfaces

This mask controls the pV3 scalar tools (planar cuts, programmed cut surfaces, block planes, iso-
surfaces and domain surfaces) attributes.

1 - Render - Surface rendering on

2 - Grid - Mesh display on

4 - Grey - Surface colored with grey

8 - Threshold - Surface is thresholded according to the threshold function and limits
16 - Contour - Contour lines are plotted on the surface

32 - Translucent - Plot surface using the translucent attribute

64 - Arrows - Arrow drawing on

128 - Tufts - Grid of tufts on (dynamic only)

256 - Mapping - A 2D mapping exists for this surface (domain only)

512 - Probing - 2D probing is active

1024 - Outline - Outline drawing is requested (with the mask equal to only this flag)
4096 - Feature Lines - Feature Lines are drawn for this surface.

8092 - Whole Arrows - With Arrows ON this bit disables the plotting of the vector in the 3D

window.

16384 - Normal Arrows - With Arrows ON this bit enables the plotting of the vector component

normal to the surface in the 3D window.

32768 - Tangent Arrows - With Arrows ON this bit enables the plotting of the vector component

tangent to the surface in the 3D window.

40

A.2 StreamLines

This mask controls the pV3 streamline plotting attributes and therefore the requested sub-extracts.

1 - Render - StreamLine rendering on
2 - Tube - Tube rendering on
4 - Grey - StreamLine drawn with default color

8 - Threshold - StreamLine is thresholded according to the threshold function and limits (not

currently implemented)
16 - Back - StreamLine is backward going (can not be active with 32)
32 - Fore - StreamLine goes down stream (can not be active with 16)
64 - Ribbon - Ribbon rendering on (with 2 makes tubes with twist)
512 - Particles - Seeding on

2048 - Probing - StreamLine probe currently active for this StreamLine (Read-only).

A.3 Particles

This mask controls the pV3 bubble rendering attributes and therefore the requested sub-extracts.
1 - Render - Bubble rendering on

2 - Size - Bubble size based on divergence like tubes - currently not used

4 - Grey - Bubble colored with default color

16 - Time - Bubbles are colored with the time of spawning

32 - Time Lines - Plot lines between particles in the same group

A.4 Vector Clouds

1 - Render - Vector cloud rendering on

4 - Grey - Vector cloud colored with default color

41

