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License

This software is being provided to you, the LICENSEE, by the Massachusetts Institute of Technology
(ML.I.T.) under the following license. By obtaining, using and/or copying this software, you agree
that you have read, understood, and will comply with these terms and conditions:

Permission to use, copy, modify and distribute, this software and its documentation for any
purpose and without fee or royalty is hereby granted, provided that you agree to comply with the
following copyright notice and statements, including the disclaimer, and that the same appear on

ALL copies of the software and documentation:
Copyright 1999-2000 by the Massachusetts Institute of Technology. All rights reserved.

THIS SOFTWARE IS PROVIDED “AS IS”, AND M.I.T. MAKES NO REPRESENTATIONS
OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITA-
TION, M.I.T. MAKES NO REPRESENTATIONS OR WARRANTIES OF MERCHANTABILITY
OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE LICENSED
SOFTWARE OR DOCUMENTATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS,
COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

The name of the Massachusetts Institute of Technology or M.I.T. may NOT be used in advertising
or publicity pertaining to distribution of the software. Title to copyright in this software and any

associated documentation shall at all times remain with M.I.T., and USER agrees to preserve same.
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1 Introduction

FX is the newest in a series of graphics and visualization tools to come out of the Department of
Aeronautics and Astronautics at MIT. FX (which stands for Fluid Feature EXtraction) is designed
to work with the results of Computational Fluid Dynamics in either steady-state of in a co-processing
transient mode. The end result is the extraction of the feature so that it can be used directly with
a visualization (such as Visual3 or pV3) or applied to some “off-line” procedure such as mesh

enrichment.

The FX tool-kit can be used directly with solvers and has been designed to function in paral-
lel/distributed environments. This has required supporting a fairly complete set of grid discretiza-

tions as well as domain decomposition (partitioning).

The Application Programming Interface (API) is split into 2 basic sections:

e Support
These are the utility and general routines that support the communication of the information
that is used to determine the spatial, temporal and partitioning of the CFD data.

e Features
These routines return the features as 3D structures and associated quantities, such as strength
that may be displayed in visualization systems or used for other non-interactive (“off-line”)

applications.



2 Programming Overview

Before presenting the subroutine argument lists in detail it is helpful to discuss, in general terms,
the data structures which the programmer supplies to FX. In some cases these data structures can
be taken directly from either Visual3 or pV3. See the appropriate Advanced Programmer’s Guide.

The programmer gives FX a list of unconnected cells and structured blocks. The disjoint cells are
of four types; tetrahedra, pyramids, prisms and hexahedra. This element generality covers almost
all data structures being used in current computational algorithms. Any special cell type which is
different must be split up into some combination of these primitives by the programmer. Linear
interpolation is used throughout FX, so high order elements must be also be subdivided so that the

linear interpolation assumption is valid.

The volume(s) are defined by face matching of the elements (based on equating node numbering).
Any exposed face (not shared by 2 cells) must be treated as either a boundary (a domain surface in
Visual3/pV3 terminology) or covered with halo cells. Therefore for multi-structured block cases,
the surfaces that are actually inside the volume must be treated so that FX can patch them together.

Note: Poly-tetrahedral strips are not supported.

2.1 Domain Decomposition

The FX tool-kit requires the calculation of spatial derivatives. This is performed in a finite-element
manner. If the data is not completely resident within one computer, additional information is
required so that the result is consistent. For all internal boundaries (created by the partitioning of
the data) a halo of cells is required. This halo is constructed by including all the cells that touch
a node on the boundary that exist in the neighboring partition. This produces additional cells and

nodes in the partition. These are differentiated in the programming interface.

It should be noted for unstructured meshes that this will require more elements than those whose

faces touch the boundary.

2.2 Node Numbering

The node numbering used within FX is local. For distributed memory cases information is required
for the halo region(s). This is done by adding the nodes required to produce these cells at the end
of the node space. It is the responsibility of the calling application to do any message passing and

node number re-mapping so that the halo information is correct.

The node numbering used differentiates between the nodes in the non-block regions (formed by
the disjoint cells), the structured blocks, and the halo regions. Figure 1 shows a schematic of the
node space. knode is the number of nodes for the non-block grid. Each structured block (m) adds
NI, * NJ,, * NK,, nodes to the node space (where NI, NJ and NK are the number of nodes in
each direction). The node numbering within the block follows the memory storage, that is, (i,j,k) in
FORTRAN and [k][j][i] in C. The FX node number = base+i+ (j —1)* NI, +(k—1)* NI« NJp,.
Where base is knode for the first block, and knode plus the number of nodes in the first block for
the second, and etc.

Note: all indices start at 1.



1 knode nnode nnode+
nhalo

Figure 1: Node Space

nhalo is the number of nodes added to the domain for the halo elements. This is zero for a case
with a single partition.

2.3 Cell Numbering

The non-block cell types may contain nodes from the non-block and the structured block volumes
but not from the halo nodes. The cell numbering used within FX orders the cells by type. Figure 2
shows a schematic of the cell space. The programmer explicitly defines all non-block cells by the
call FXcell or provides the pointers by the call-back FXcellPtr. Again the cells within the blocks
are defined by the block size. Each structured block (m) adds (NI,,, — 1) x (NJ, — 1) x (NK,,, — 1)
cells to cell space. The cell numbering within the block follows the memory storage so that a FX
cell number = base +i + (j — 1) * (NI, — 1)+ (k— 1) x (NI, — 1) x (NJ,,, — 1). Where base is
nTets+nPyra+ nPrism+nHexa for the first block, and this value plus the number of cells in the
first block for the second, and etc.

Note: i goes from 1 to NI, — 1, j goes from 1 to NJ,, — 1, and k goes from 1 to NK,, — 1.

Tetras Pyramids  Prisms Hexas Blocks

1 nTets nTets+ nTets+ nTets+ ncells
nPyra nPyra+ nPyra+
nPrism  nPrism+
nHexa

Figure 2: Cell Space

There are individual structures for each element type. This provides compatibility with both
Visual3d and pV3 and minimizes the amount of memory required to fully describe complex gridding.
The halo cells are handled in a different manner. Each cell is disjoint (either a tetrahedron, pyramid,
prism or hexahedron) and is stored in the same structure. Node indices that make up the halo cells
must contain at least one non-halo node and at least one halo node (index > nnode). The exception
to this is when blocks are patched or for C meshes where all node indices can be from the non-halos.

If the disjoint element storage is not consistant with that used by Visual3 and pV3, and one
wishes to minimize the total memory load, FX can construct these cells on-the-fly. This is a trade-



off of less speed for less memory utilization. If this option is used, the cell indexing need not reflect
the collection of all like types (as seen in Figure 2), but can be random. And, the total number of
cells is nTets+nPyra+nPrism+nHexa, but the number of individual cells of each type need to
match these input values. Halo elements will also be constructed on-the-fly and will have negative

indices.

Again, the numbering is local for multiple processor applications.

2.4 Blanking

Blanking is an option (see the description of FX_Init) and only used with structured blocks to
indicate that some region of the block is ‘turned off’. A part of a block is deactivated by flagging
the appropriate nodes as invalid. This is done by an IBLANK array. An invalid node is never used.

When blanking is used, all the nodes (nnode — knode) in the structured block space are given
a value; zero corresponds to an invalid mesh point, any non-zero value indicates an existing node

point.

2.5 Surfaces

In principle, all exposed facets could be grouped together to form one bounding surface. However, in
many applications it is more useful to split the bounding surface into a number of pieces, referred to
in Visual3 and pV3 documentation as domain surfaces. For example, the outer bounding surface
of a calculation of airflow past a half-aircraft (using symmetry to reduce the computation) would
typically be split into four pieces, the inflow boundary, the outflow, the symmetry plane, the aircraft.
The Residence Time functions of FX require information on which exposed facets to apply what

boundary condition. These must be classified as either inflow, outflow, symmetry and no-flux (wall).

Internal surfaces are those that get created when the computational domain is sub-divided and
placed in multiple machines. These artificial surfaces are handled by the halo elements so it appears
to FX that they do not exist.

2.6 Programming Notation

FX was designed to be accessible from both FORTRAN and C. FORTRAN is more restrictive in
argument passing and naming, therefore it has shaped the programming interface. The routine
descriptions in this guide are from the C programmer’s point of view. But because FORTRAN is
supported with the same API all routine arguments are pass by reference. It is assumed that a

routine’s argument is not modified unless documented as such.

For IBM and HP ports, all FX entry points are the FORTRAN names in lower-case. On all
other platforms except the CRAY and WindowsNT, external entries are lower-case with an under-
score (‘’) appended to the end. CRAY entry points are upper-case with no appended underscores.
WindowsNT entry points must be declared as __stdcall and are upper-case with no appended un-

derscores. See the file ‘FX.h’ in the distribution for a method to avoid these problems.

Consistent with the Visual3 and pV3 naming conventions, the routines that are part of the

FX tool-kit are prefixed with ‘FX_’, those that are supplied by the programmer start with ‘FX’ and



do not have an underscore as the next character. There are a number of pairs (or triads) of these
programmer-supplied call-backs. These exist in order in conserve memory, that is if the programmer
already has the data in the proper form then the pointer to that data is passed to FX. Otherwise FX
allocates the appropriate memory and it is the responsibility of the call-back to fill that structure.
Ouly one of the pair (or triad) will be called during the FX session. The convention for the routines

that return pointer(s) is the base routine name with the ‘PTR’ or ‘P3D’ suffix.

2.7 Calling Sequences

The FX tool-kit supports steady-state as well as three types of unsteadiness. In a multiple partition
simulation, each sub-domain can have a different transient mode. Each mode causes a different
internal calling sequence. In general, the application must first call FX_Init to initialize the FX
system and then call FX_Update after every time the solution space has been updated. A schematic
of a typical CFD solvers coupling with FX can be seen in Figure 3. The name FX extract is an

indication of any series of underscore routines documented in Sections 5 to 8.

Initialize solver FXstruc (opt)

< > FX Init(...) >
N
v > FXcell
Calcluate BCs
Y > FXsurface
Compute RHS
1 Y <> FXgI‘ld
Smoothing Step FX _Update(time) [+
! <« FXblank (opt)
Report Iteration
v > FXvel
Update Field [ || FXlextract(...) e
’ -—> others...
Flow Solver FX calls FX call-backs

Figure 3: Co-processing Calling sequence



e Steady-State

Call Calls in Sequence

FX Init FXcell or FXcellPtr (optional)
FXsurface or FXsurfacePtr
FXgrid, FXgridPtr or FXgridP3d
FXBlank or FXblankPtr (optional)

FX_Update | NOT required

FX_extract | FXvel, FXvelPtr or FXvelP3d

e Data Unsteady

other call-backs as needed

Call Calls in Sequence

FX _Init FXcell or FXcellPtr (optional)
FXsurface or FXsurfacePtr
FXgrid, FXgridPtr or FXgridP3d
FXBlank or FXblankPtr (optional)

FX_Update | NONE

FX_extract | FXvel, FXvelPtr or FXvelP3d

e Grid Unsteady

other call-backs as needed

Call Calls in Sequence

FX _Init FXcell or FXcellPtr (optional)
FXsurface or FXsurfacePtr

FX_Update | FXgrid, FXgridPtr or FXgridP3d
FXBlank or FXblankPtr (optional)

FX_extract | FXvel, FXvelPtr or FXvelP3d
other call-backs as needed
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e Structure Unsteady

Call Calls in Sequence

FX_Init NONE

FX_Update | FXstruc
FXcell or FXcellPtr (optional)
FXsurface or FXsurfacePtr
FXgrid, FXgridPtr or FXgridP3d
FXBlank or FXblankPtr (optional)

FX _extract | FXvel, FXvelPtr or FXvelP3d

other call-backs as needed

11



3 Programmer-called subroutines

3.1 FX_Init

FX_INIT(GAMMA, IOPT, KNODE, NHALO, NTETS, NPYRA, NPRISM,
NHEXA, NBLOCK, BLOCKS, NHCELL, NFACET, NBC, FLAGS)

This subroutine initializes the FX tool-kit. Calling this routine defines the type of case and the

sizes of various parameters having to do with the volume discretization. This calling sequence also

defines how and which call-backs are invoked so that FX can get the required data. This routine

must be the first FX tool-kit call.

float *GAMMA Ratio of specific heats

int *IOPT Unsteady control parameter

IOPT=0 steady grid and data
IOPT=1 steady grid and unsteady data
IOPT=2 unsteady grid and data
IOPT=3 structure unsteady

int *KNODE Number of non-block nodes
int *NHALO Number of halo nodes

int *NTETS Number of tetrahedra

int *NPYRA Number of pyramids

int *NPRISM Number of prisms

int *NHEXA Number of hexahedra,

int *NBLOCK Number of structured blocks
int BLOCKS[][3] Structured block definitions:

BLOCKS[m][0] = NI
BLOCKS[m][1] = NJ
BLOCKS[m][2] = NK

int *NHCELL Number of halo elements
int *NFACET Number of domain surface facets
int *NBC Number of domain surface groups (boundary conditions)

12



int *FLAGS An error code on return (0 is success). This is the call mask on
input:
bit 0 — 1/0 = 0 - call FXcell for the disjoint cell data,
1 - call FXcellPtr for the disjoint information.

bit 1 — 2/0 = 0 - call FXsurface for the Boundary Condition
data, 2 - call FXsurfacePtr for the Boundary Conditions.

bit 2 — 4/0 = 0 - call FXgrid for coordinates,
4 - call FXgridPtr or FXgridP3d for using pointers.

bit 3 — 8/0 = 0 - call FXvel for the flow vector field,
8 - call FXvelPtr or FXvelP3d for using pointers.

bit 4 — 16/0 = 0 - no Blanking, 16 - Blanking.

bit 5 — 32/0 = 0 - FXblank is called for Blanking,
32 - FXBlankPtr is called.

bit 6 — 64/0 = 0 - use FXgridPtr and FXvelPtr,
64 - use Plot3D style calls FXgridP3d and FXvelP3d.

bit 7 —128/0 = 0 - use FXcell or FXcellPtr,
128 - build elements on-the-fly with FXcellGet.

Notes:
1) For structure unsteady cases (IOPT = 3), the parameters that describe the sizes of the node
and cell space should be a good guess at the sizes used during the simulation. For structured block
cases, NBLOCK must be the maximum number of blocks for the run. The current sizes are set by
a call to FXstruc from within FX_Update.
2) If FXcellGet is used (bit 7 on) then the total number of elements used is the sum of NTETS,
NPYRA, NPRISM and NHEXA. FXcellGet is also used to define the halo elements. The index

order need not match the cell space (Figure 2) order, but can be random in mixed element cases.

13



3.2 FX_Update

FX_UPDATE(TIME)

This subroutine must be called after the solver has updated the solution space. This is when all
communication between any partitions is complete including the messages required to transmit the
halo data. The call to this routine is not needed if IOPT = 0.

float *TIME The current simulation time.

3.3 FX_Close

FX_CLOSE( )
This subroutine closes the FX tool-kit. This deallocates all memory. No FX routines can be used

until FX_Init is called again.

No Arguments

3.4 FX_Free

FX_FREE(PTR)

This function is equivalent to the C routine ‘free’. It deallocates a block of memory. NOTE: Use
this utility routine to free up blocks of that have been allocated by FX and returned when they are
no longer needed. These pointers are labeled as freeable in the routine definition.

void **PTR The address of the memory block.

14



4 Call-backs

4.1 FXcell

FXCELL(TETS, PYRA, PRISM, HEXA, HCELL)
This subroutine supplies FX with the grid data structure. It is not required for a grid that contains
only structured blocks and no halo cells.

int TETS[NTETS][4] Node indices for tetrahedral cells (filled)
int PYRA[NPYRA][5] Node indices for pyramid cells (filled)
int PRISM[NPRISM][6] Node indices for prism cells (filled)

int HEXA[NHEXA][8] Node indices for hexahedral cells (filled)
int HCELLNHCELL][9] Halo cell descriptions (filled)

HCELL[m][0-7] = Node indices for the cell

HCELL[m][8] = 1 - tetrahedron, 2 - pyramid, 3 - prism, 4 -
hexahedron

The correct order for numbering nodes for the four disjoint cell types is shown in Fig. 4.

4.2 FXcellPtr

FXCELLPTR(PTETS, PPYRA, PPRISM, PHEXA, HCELL)
This subroutine supplies FX with the pointers to grid data structure. It is not required for a grid

that contains only structured blocks and no halo cells.

int **PTETS Pointer to node indices for tetrahedral cells (returned)
int **PPYRA Pointer to node indices for pyramid cells (returned)
int *PPRISM Pointer to node indices for prism cells (returned)

int **PHEXA Pointer to node indices for hexahedral cells (returned)
int HCELL[NHCELL][9] Halo cell descriptions (filled)

HCELL[m][0-7] = Node indices for the cell

HCELL[m][8] = 1 - tetrahedron, 2 - pyramid, 3 - prism, 4 -
hexahedron

15
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3 341

. 4 412
B Tetrahedron
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Figure 4: Disjoint cell types and node/face numbering
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4.3 FXcellGet

FXCELLGET(INDEX, TYPE, CELL)
This subroutine supplies FX with the disjoint cell data for on-the-fly construction of elements. It is
required if bit 7 is on in the FLAGS arguments of FX Init.

int *INDEX Cell index, 1 to total number of cells and -1 to -NHCELL to
indicate halo elements.

int *TYPE 1 - tetrahedron, 2 - pyramid, 3 - prism, 4 - hexahedron (re-
turned)

int CELL[8] Node indices for the requested cell (filled)

4.4 FXgrid

FXGRID(XYZ, HXY?Z)
This subroutine supplies FX with the grid coordinates for all of the nodes.

float XYZ[NNODE][3] (z,y, z)-coordinates of grid nodes (filled)
float HXYZ[NHALO](3] (z,y, z)-coordinates of halo grid nodes (filled)

4.5 FXgridPtr

FXGRIDPTR(PXYZ, HXY?Z)
This subroutine supplies FX with the pointer to the grid coordinates for all of the nodes.

float **PXYZ the pointer to the structure containing (x,y, 2)-coordinates of
grid nodes (returned)

float HXYZ[NHALO]([3] (z,y, z)-coordinates of halo grid nodes (filled)

4.6 FXgridP3d

FXGRIDP3D(PX, PY, PZ, HXY?Z)
This subroutine supplies FX with the pointers to the grid coordinates for all of the nodes using the
PLOT3D strorage scheme.

float **PX the pointer to the memory block containing the x-coordinates
of grid nodes (returned)

float **PY the pointer to the memory block containing the y-coordinates
of grid nodes (returned)

float **PZ the pointer to the memory block containing the z-coordinates
of grid nodes (returned)

float HXYZ[NHALO][3] (%, y, z)-coordinates of halo grid nodes (filled)

17



4.7 FXsurface

FXSURFACE(NSURF, CELL, FACET)
This subroutine supplies FX with the surface data structure. This specifies that these are exposed

facets and indicates the type of boundary condition to apply.

int NSURF[NBC]([2] NSURF[m][0] is the pointer to the end of domain boundary
group n, i.e. it contains the index to the last entry in CELL and
FACET for that group. NSURF[m][1] is the boundary type:
1 inflow
2 outflow
3 wall
4 wall (slip)
5 symmetry

6 nothing — extrapolate

int CELL[NFACET] the index for the cell containing the face defined by FACET.
(filled)
int FACET[NFACET][4] node numbers for surface faces. For quadrilateral faces FACET

must be ordered clockwise or counter-clockwise; for triangular
faces, FACET[m][3] must be set to zero. (filled)
Note:
The correct order for numbering faces for the four disjoint cell types is shown in Fig. 4. For struc-
tured blocks; face #1 is for exposed cells with cell index k = 1, face #2 is for i = NI, — 1, face #3
is for cells with j = NJ,, — 1, face #4 is for i = 1, face #5 is associated with ¥ = NK,, — 1, and
face #6 is for j = 1.

4.8 FXsurfacePtr

FXSURFACEPTR(NSURF, PCELL, PFACET)
This subroutine supplies FX with the surface data pointer. This specifies that these are exposed
facets and indicates the type of boundary condition to apply.

int NSURF[NBC][2] NSURF[m][0] is the pointer to the end of domain boundary
group n, i.e. it contains the index to the last entry in CELL and
FACET for that group.
NSURF[m][1] is the boundary type.

int **PCELL pointer to the structure containing cell indices for the facets
(returned)
int **PFACET pointer to the structure containing node numbers for surface

faces (returned)
Note:
The pointer returned from within Visual3 using V3_GetStruc (OPT = 323) can not be used for
PCELL because that data has the face index encoded with the cell number.
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4.9 FXblank

FXBLANK(IBLANK)
This subroutine supplies FX with blanking data. Required for bit 4 on and bit 5 off in FLAGS (of
FX Init).

int IBLANK[NNODE-KNODE]  Blanking data (filled):

= 0 off, invalid node

# 0 on

4.10 FXblankPtr

FXBLANKPTR(PIBLANK)
This subroutine supplies FX with a pointer to the blanking data. Required for bit 4 on and bit 5
on in FLAGS (of FX_Init).

int *PIBLANK pointer to blanking data (returned)

4.11 FXvel

FXVEL(V, HV)
This subroutine supplies FX with the velocity field.

float VINNODE][3] Velocity function values (Vz,Vy, Vz) (filled)
float HV[NHALO][3] Halo velocity function values (Vz,Vy,Vz) (filled)

4.12 FXvelPtr

FXVELPTR(PV, HV)
This subroutine supplies FX with the pointer to the velocity field.

float **PV Pointer to the Velocity structure (returned)
float HV[NHALO]][3] Halo velocity function values (Vz,Vy,Vz) (filled)

4.13 FXvelP3d

FXVELP3D(PVX, PVY, PVZ, HV)
This subroutine supplies FX with the pointers to the velocity field using the PLOT3D stroage

scheme.

float **PVX Pointer to the memory block that contains Vz (returned)
float **PVY Pointer to the memory block that contains Vy (returned)
float **PVZ Pointer to the memory block that contains Vz (returned)
float HV[NHALO][3] Halo velocity function values (V,Vy,Vz) (filled)

19



4.14 FXscal

FXSCAL(TYPE, S, HS)

This subroutine supplies FX with the specified scalar field.

int TYPE
float SINNODE]

float HS[NHALO)]

4.15 FXstruc

Scalar field indicator

Scalar functional values based on TYPE (filled):

TYPE = 1 - density

TYPE = 2 - pressure

TYPE = 3 - Mach number

TYPE = 4 - Total viscosity (laminar and turbulent)
TYPE = 5 - Enthalpy

Halo scalar functional values based on TYPE

FXSTRUC(KNODE, NHALO, NTETS, NPYRA, NPRISM, NHEXA,
NBLOCK, BLOCKS, NHCELL, NFACET, NBC)

This subroutine is required for structure unsteady cases (IOPT = 3) only. This routine supplies the

sizes of the current state of the problem.

int *KNODE
int *NHALO
int *NTETS
int *NPYRA
int *NPRISM
int *NHEXA
int *NBLOCK
int BLOCKS[][3]
int *NHCELL
int *NFACET
int *NBC

Notes:

Number of non-block nodes / static flag
Number of halo nodes

Number of tetrahedra

Number of pyramids

Number of prisms

Number of hexahedra

Number of structured blocks
Structured block definitions

Number of halo elements

Number of domain surface facets

Number of domain surface groups (boundary conditions)

1) If KNODE is —1 that is a special flag to indicate that the structure has NOT changed for this
iteration. With this flag set, no other parameters should be modified, and FX reverts to the grid

unsteady calling sequence.

2) If NHALO is non-zero at initialization, it must remain non-zero.

20



5 Shock Routines

5.1 FX_ShockFind

FX_SHOCKFIND(PTEST)
This subroutine returns the result of the shock test function.

float **PTEST Pointer to a block of floats (freeable), in the form TEST[NNODE]
(returned)
If a NULL (zero) is returned, then some error occured.
These values produce a scalar field for the shock test function.
Any value greater than 1.0 is an indication that the node is in
a shock region.

5.2 FX_ShockSurface

FX_SHOCKSURFACE(TEST, NSPTS, PSXYZ, NSTRIS, PSTRIS, PSCELL)
This subroutine takes the shock test function, generates and returns the surface(s) at the value 1.0.

The surface(s) can be constructed from the triangle indices (bias 1) into the shock nodes pointed to
by PSXYZ.

float TEST[NNODE] This must be the data returned by FX_ShockFind.
int *NSPTS The number of points that support the shock surface (returned)
float **PSXYZ Pointer to the block of memory (freeable) that contains the

coordinates (returned)
The memory block is of the form SXYZ[NSPTS][3].

int *NSTRIS The number of triangles that make up the surface (returned)

int **PSTRIS Pointer to the block of memory (freeable) that contains the
triangle indices (returned)
The memory block is of the form STRIS[NSTRIS][3].

int **PSCELL Pointer to the block of memory (freeable) that contains the cell
indices for the triangle (returned)
The memory block is of the form SCELL[NSTRIS].
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5.3 FX_ShockVolumes

FX_SHOCKVOLUMES(TEST, NREGION, PVOLS, PECELL, PCELLS,

PENODE, PNODES)
This subroutine takes the shock test function and partitions space (based on cells) into regions that
cross 1.0 or are above 1.0 for the function. The physical volume as well as the list of cells and nodes
contained with each region are returned. Note: a cell can only be in one region so there are some
circumstances where the results of FX_ShockSurface will display more regions than returned here.

float TEST[NNODE] This must be the data returned by FX_ShockFind.

int *NREGION The number of distinct regions or volumes (returned)

Zero is the indication of an error.

float **PVOL Pointer to the block of memory (freeable) that contains the
actual volume for the region (returned) — can be NULL (zero)

under an error
The memory block is of the form VOLNREGION].

int **PECELL Pointer to the block of memory (freeable) that contains the last
index (bias 1) for the list of cells for the region (returned)
The memory block is of the form ECELL[NREGION].

int **PCELLS Pointer to the block of memory (freeable) that contains the
complete list of cells for all regions (returned)
The block looks like CELLS[ECELL[NREGION-1]].

int *PENODE Pointer to the block of memory (freeable) that contains the
last index (bias 1) for the list of nodes for the specific region
(returned)

The memory block is of the form ENODE[NREGION].
int *PNODES Pointer to the block of memory (freeable) that contains the

complete list of nodes for all regions (returned)
The block looks like NODES[ENODE[NREGION-1]].
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6 Vortex Cores

6.1 FX_VortexCore

FX_VORTEXCORE(TYPE, NVCSEG, PVCSEG, PVCXYZ, PVCSTREN)
This routine returns the vortices found in the domain. They are processed as a number of segments
each with a particular length.

int *TYPE The method used to extract the core:

TYPE = 0 - vorticity vector
TYPE = 1 - eigenmodes of the Velocity Gradient Tensor

int *NVCSEG The number of vortex core segments (returned)

int **PVCSEG Pointer to the block of memory (freeable) that contains the core
end point indices (returned)
The memory block is of the form VCSEG[NVCSEG].

float *PVCXYZ Pointer to the block of memory (freeable) that contains the
vortex core points for all segments (returned)
The memory block is of the form
VCXYZ[VCSEG[NVCSEG-1]][3].

float **PVCSTREN Pointer to the block of memory (freeable) that contains the
vortex core strength (returned)
The memory block is of the form
VCSTREN[VCSEG|NVCSEG-1]).
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7 Separation & Attachment Lines

7.1 FX _SepnLine

FX_SEPNLINE(SLNP, PSLXYZ, ALNP, PALXY?Z)
This routine returns the separation and attachment lines found on all facets for the domain bounds.

They are processed per BC with indices pointing to the end of each suite of segments.

int SLNP[NBC]

float **PSLXYZ

int ALNP[NBC]

float **PALXY?Z

Index (bias 1) that points to the last point in SLXYZ for that
group of facets. The total number of line segments is 1/2 the
number of points. (filled)

Pointer to the block of memory (freeable) that contains the
separation points — each pair creating a disjoint line segment
(returned)

The memory block is of the form SLXYZ[][3].

If a NULL (zero) is returned, then some error occured.

Index (bias 1) that points to the last point in ALXYZ for that
group of facets. The total number of line segments is 1/2 the
number of points. (filled)

Pointer to the block of memory (freeable) that contains the
attachment points — each pair creating a disjoint line segment
(returned)

The memory block is of the form ALXYZ[][3].

If a NULL (zero) is returned, then some error occured.
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8 Residence Time Routines

8.1 FX_RTParams

FX_RTPARAMS(RTTYPE, SM2, SM4, KAPPA)

This routine must be called before any other residence time functions. It is best to put this call
after FX_Init when computing residence time. Once called, Residence Time is integrated (for the
domain) during the call to FX_Update. If already on, this call terminates the integration.

int *RTTYPE 0 to 3 for inviscid incompressible, viscous compressible, constant
viscosity and density and inviscid compressible, respectively.
Returned with status — O is OK.

float *SM2 second-difference smoothing coefficient (o2).
float *SM4 fourth-difference smoothing coefficient (o4).
float *KAPPA K= %, required for RTYPE = 2 only.

8.2 FX_RTTimeStep

FX_ RTTIMESTEP(MAXDT)

This routine can be called to get the current maximum delta-time that may be used to insure
stability. The residence time equation has less of a time step constraint than either the Euler of
Navier-Stokes equations, so this is not required for co-processing with explicit solvers. This call may
be required when using residence time integration with steady-state solutions.

float *MAXDT The maximum delta-time that is acceptable.

8.3 FX_RTGet

FX_RTGET(RT)
This subroutine returns the result of the shock test function.

float RT[NNODE] The residence time for each node in the domain.
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8.4 FX_RTSurface

FX_RTSURFACE(RT, RTV, NRTPT, PRTXYZ, NRTTRI, PRTTRI, PRTCELL)
This subroutine takes the residence time values, generates and returns the surface(s) at the value
RTV. The surface(s) can be constructed from the triangle indices (bias 1) into the residence time
nodes pointed to by PRTXYZ.

float RT[NNODE] This must be the data returned by FX_RTGet.

float *RTV This is the residence time value used to generate the surface.

int *NRTPT The number of points that support the residence time surface
(returned)

float **PRTXYZ Pointer to the block of memory (freeable) that contains the

coordinates (returned)
The memory block is of the form RTXYZ[NRTPT][3].

int *NRTTRI The number of triangles that make up the surface (returned)

int **PRTTRI Pointer to the block of memory (freeable) that contains the
triangle indices (returned)
The memory block is of the form RTTRI[NRTTRI][3].

int *PRTCELL Pointer to the block of memory (freeable) that contains the cell
indices for the triangle (returned)
The memory block is of the form RTCELL[NRTTRI].

8.5 FXmodifyRT

FXMODIFYRT(RT, DRT)

This optional call-back is invoked from FX_Update and exposes both the internal array of residence
time values and the deltas to be applied. This is called just before the values are updated. FXmod-
ifyRT allows the modification of either RT or DRT directly. This is required for special boundary
conditions, such as moving interfaces, periodics boundaries or other treatments not supported.

float RT[NNODE] Node based residence time values.
float DRT[NNODE] Node based updates of the residence time values.
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9 Boundary Layer/Wake Routine

9.1 FX_BLSurface

FX_BLSURFACE(NBLPTS, PBLXYZ, PBLD, NBLTRIS, PBLTRIS, PBLCELL)

This subroutine returns the boundary layer and wake surfaces found with the domain. The surface(s)

can be reconstructed from the triangle indices (bias 1) into the BL nodes pointed to by PBLXYZ.

int *NBLPTS

float **PBLXYZ

float **PBLD

int *NBLTRIS

int *PBLTRIS

int **PBLCELL

The number of points that support the boundary layers (re-
turned)

Pointer to the block of memory (freeable) that contains the
coordinates (returned)
The memory block is of the form BLXYZ[NBLPTS][3].

Pointer to the block of memory (freeable) that contains the
thickness — a negative value is the indication of a wake (re-
turned)

The memory block is of the form BLD[NBLPTS].

The number of triangles that make up the boundary layer(s)
(returned)

Pointer to the block of memory (freeable) that contains the
triangle indices (returned)
The memory block is of the form BLTRIS[NBLTRIS][3].

Pointer to the block of memory (freeable) that contains the cell
indices for the triangle (returned)
The memory block is of the form BLCELL[NBLTRIS].
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A Non-dimensionalization

When using FX it is important that the supplied vector and scalar fields are provided in a con-
sistant and non-dimensionalized manner. This non-dimensionalization is based on a number of key

quantities. These values should be used to divide the raw quantities before supplying them to FX.

The key values are:

® p,.5 — reference density

® u,.; — reference speed

L.y — reference length

Ures — reference viscosity

The following quantaties may also be important:

Pref Urefbref

¢ Reynolds Number = oy

e Specific Heat Ratio = v = C,,/C,

[ ] CPZ%R

The overbar quantaties are the dimensional (or inconsistant non-dimensional) values:

e Distance (each component of the mesh coordinates) - X = zY,
: 4 t
e Time -t = Torfune
e Velocity (¢) components — u = qu
e Density — p = PZI
e Pressure — p = # = (y—1)plE — }|7- 7]
e Enthalpy - H=-Z =E+2
Uoes P
e Viscosity — u = Nﬂf

Note: R is the gas constant, E is internal energy (usually a component of the CFD state vector
— non-dimensionalized like Enthalpy). The above assumes that v is a constant.
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